题面
数列求和2
Time Limit: 1000MS Memory limit: 65536K题目描述
给出一个数列 S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). 我们定义 sum(i, j) = S i +S i+1+ ... + S j (1 ≤ i ≤ j ≤ n).
现在给你一个整数 m (n>=m > 0), 你的任务是找出m对 i,j 使 sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) 最大化 (i x ≤ i y ≤ j x 或 i x ≤ j y ≤ j x 是不允许的).
结果仅输出sum(i x, j x)的最大累加和(1 ≤ x ≤ m) 就行了.输入
包含多组数据,每组数据占一行,前两个整数是m和n,后面紧跟着是n个整数S 1, S 2, S 3 ... S n.输出
输出所描述的结果,每一组的结果占一行示例输入
1 3 1 2 3
2 6 -1 4 -2 3 -2 3示例输出
6
8提示
来源
“师创杯”山东理工大学第八届ACM程序设计竞赛
解题思路
对本蒟蒻来说难度不小的 DP,推出状态转移方程后还需要使用滚动数组优化一下。具体题解请参考学长的博客:http://blog.csdn.net/u013569304/article/details/51321705 或自行搜索 「HDOJ 1024: Max Sum Plus Plus」 的相关题解。
参考代码:
#include <cstdio>
#include <algorithm>
using namespace std;
int a[1000001];
long long dp[1000001], maxn[1000001];
int main(int argc, char const *argv[]) {
int m, n;
while(~ scanf("%d %d", &m, &n)) {
for(int i=1; i<=n; ++i) {
scanf("%d", &a[i]);
dp[i] = -1e15;
maxn[i] = -1e15;
}
long long ans = -32768;
dp[0] = maxn[0] = 0;
for(int i=1; i<=n; ++i) {
for(int j=1; j<=i; ++j) {
dp[j] = max(dp[j]+a[i], maxn[j-1]+a[i]);
maxn[j-1] = max(maxn[j-1], dp[j-1]);
if(j==m || j==i)
maxn[j] = max(maxn[j], dp[j]);
if(j == m)
ans = max(ans, dp[j]);
}
}
printf("%lld\n", ans);
}
return 0;
}
还不快抢沙发